Economics 611 Handout #6

THE ECONOMICS OF ASYMMETRIC INFORMATION

Chap. 13: Asymmetric info at the time of contracting: Adverse Selection and Screening

Model I. [First just an equilibrium model \textbf{without} any game-theory flavor]:

Competitive Output market; \(p = 1; \ w = p \cdot \text{MPP} = 1 \cdot \theta \)

Two kinds of workers: low and high productivity: \(\theta_L < \theta_H \); Numbers: \(N_L, N_H; \ N_L + N_H = N \)

\[
\bar{\theta} = \frac{N_L \theta_L + N_H \theta_H}{N_L + N_H}
\]

Opportunity cost of employment: \(r_L, r_H \)

Two cases:

I. \(\theta_i \)'s are observable: At equilibrium, \(w_L = \theta_L; w_H = \theta_H \).

II. Workers know own \(\theta_i \); \(\theta_i \)'s are unobservable by firms. [So single wage, \(w \).]

Supply: \(N \) of \(\theta_i \) offer to work if \(w \geq r \) [tie issue] \(\Theta(w) = \{ \theta : w \geq r(\theta) \} \)

Demand: Let \(\mu = \) expected average productivity of those who accept employment. [This is ASSUMED to be \(\bar{\theta} \) if \(\Theta(w) \) is empty.]

\[
\mathcal{Z}(w) = \begin{cases}
0 & \text{if } \mu < w \\
[\theta, \infty) & \text{if } \mu = w \\
\infty & \text{if } \mu > w
\end{cases}
\]

Definition (Akerlof): \((w^*, \Theta^*)\) is a competitive equilibrium if

(i) \(\Theta^* = \Theta(w^*) \);

(ii) \(w^* = E(\theta : \theta \in \Theta^*) \)
A. It is possible that such an equilibrium is NOT Pareto optimal.

Example: \(\theta_L < r_L = r_H < \theta_H \) \[r = r_L = r_H \]

Then at any Akerlof equilibrium,

\[
\Theta^*(w) = \begin{cases}
\{\theta_L, \theta_H\} & \text{if } w \geq r; \\
\emptyset & \text{if } w < r.
\end{cases}
\]

Either way, \(E(\theta : \theta \in \Theta^*) = \bar{\theta} \); so at equilibrium, \(\bar{\theta} = w^* \).

There must be unrealized contracts:

Case 1. \(\bar{\theta} > r \). Then \(w^* > r \) and everyone works. Note: \(w^* - r < w^* - \theta_L \). A firm would like to offer a \(w'' \) between these: \(w^* - r < w'' < w^* - \theta_L \) to a Type-L to quit since then \(w^* - w'' > \theta_L \).

The Type-L would like to take this offer since \(r + w'' > w^* \).

Case 2. \(\bar{\theta} < r \). Then \(w^* < r \) and no one works. A firm would like to offer a \(w' \), \(r < w' < \theta_H \), to a Type-H to work and a Type-H would like to take this offer.

B. It is possible there is no equilibrium: Adverse selection and market unraveling:

\(r(\theta) \) varies with \(\theta \). Here: \(r_H > r_L \).

\(N_L = 100 = N_H; \theta_L = 1/3; r_L = 3/7; r_H = 4/7; \theta_H = 2/3. \) Note: \(\theta_L < r_L < r_H < \theta_H \)

(1) Suppose \(\Theta^* = \{\theta_L, \theta_H\} \) \(E(\theta : \theta \in \Theta^*) = [100 \cdot (1/3) + 100 \cdot (2/3)] / [100 + 100] = 1/2 \)

If \(w = 1/2 \), \(w > r_L \) but \(w < r_H \); so \(\Theta(w) = \{\theta_L\} \) and only Type-L workers accept employment.

(2) Suppose \(\Theta^* = \{\theta_L\} \) then \(E(\theta : \theta \in \Theta(w)) = \theta_L = 1/3 < 3/7 \) and \(\Theta(w) = \emptyset \); Type-L workers also refuse employment.

There does not exist an Akerlof equilibrium.

That requires also looking at (3) \(\Theta^* = \{\theta_H\} \) and (4) \(\Theta^* = \emptyset \).
Model II. [now with game theory flavor]
Continuous case: Common knowledge: \(\theta \) distributed uniformly on \([1, 2]\); \(r(\theta) = .9\theta \)

So, for example,
\[
E(\varnothing / r(\theta) \leq 1) = E(\varnothing / 1 \leq \theta \leq 1.111...) = 1.05555...
\]

and
\[
E(\varnothing / r(\theta) \leq 1.8) = E(\varnothing / 1 \leq \theta \leq 2) = 1.5. E(\varnothing / r(\theta) \leq w) = \frac{1}{2} (1 + w/.9) \text{ for } .9 \leq w \leq 1.8
\]

An Akerlof equilibrium is found at \(w^* = 1.125 \) and \(\Theta^* = \{ \varnothing / 1 \leq \theta \leq 1.25 \} \)

We want to show this results from a pure subgame perfect Nash equilibrium.

The SPNE strategies are:

(i) For workers: A worker of type \(\theta \) accepts employment only at one of the highest wage firms and does so if and only if \(r(\theta) \leq w^* \) where \(w^* \) is the highest wage offered.

(ii) Both firms offer wage of 1.125
Clearly if \(r(\theta) > 1.125 \), switching to accepting employment at 1.125 makes the worker worse off. If \(r(\theta) \leq 1.125 \), a worker can not be made better off by switching to not accepting work, or by switching to working at a lower wage firm.

Notice that since \(E(\theta / r(\theta) \leq 1.125) = 1.125 \), the firms are both earning a profit of 0. If a firm switches to offer less than 1.125, they get no workers, and get a profit of 0, no better than before. If a firm switches to offer \(w' > 1.125 \), they get all the workers and profit per worker is \(E(\theta / r(\theta) \leq w') - w' < 0 \), worse than before.

Q: For whom are there unrealized contracts?

Exercises: 13B2, 13B5