1. There are two players. Player 1's strategy space is \{0, 1, 2, ..., 20\} (numbers of nickels offered to #2); player 2's strategy space is all 21-entry lists of A (accept) and R (reject). The payoff at \((x, \text{ARRARRR...AR})\) is
 a) \(100-5x\) for #1 and \(5x\) for #2 if #2 has A in the \(x+1\)st position
 b) \((0,0)\) otherwise.
 How many Nash equilibria are there?

2. There are eight players bidding for a prize of $20. For each individual \(i\), the strategy space is \(S_i = \{0, .01, .02, ..., 20.00\}\). If players choose \((s_1, s_2, ..., s_8)\), player \(i\) wins if \(s_i \geq s_j\) for all \(j\). If there are \(k\) winners, each winner \(i\) receives \((20 - s_i)/k\). What are all the Nash equilibria of this game?