Normal Form Games

Prisoner’s dilemma:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(1, 1)</td>
<td>(−1, 10)</td>
</tr>
<tr>
<td>D</td>
<td>(10, −1)</td>
<td>(0, 0)</td>
</tr>
</tbody>
</table>

C: cooperate D: Defect

The closest-to-2/3 game:

Variation 1. There are five players. For each individual i, the strategy space is $S_i = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. If players choose $(s_1, s_2, ..., s_5)$, the mean of the s_i values is m. Player i wins if she has the minimum, over all j, of $|s_j - (2/3)m|$. Then $100 is divided equally among those who win. Are there any Nash equilibria? If so, what are they?

Variation 2. Same as Variation 1, except that, for each individual i, the strategy space is $S_i = [0, 10]$, the closed interval of real numbers.

The wall-color game:

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>(+1, −1)</td>
<td>(−1, +1)</td>
</tr>
<tr>
<td>W</td>
<td>(−1, +1)</td>
<td>(+1, −1)</td>
</tr>
</tbody>
</table>

Are there any Nash equilibria? If so, what are they?

The NYT bidding game:

Variation 1. There are eight players bidding for a prize of $20. For each individual i, the strategy space is $S_i = \{0, .01, .02, ..., 20.00\}$. If players choose $(s_1, s_2, ..., s_8)$, player i wins if $s_i \geq s_j$ for all j. If there are k winners, each winner i receives $(20 − s_i)/k$. What are ALL the Nash equilibria of this game?
The greed-punishing game:

Variation 1. Players 1 and 2 may split a million dollars. Both players simultaneously name shares they would like to have, s_1 and s_2, with $0 \leq s_1 \leq 1$ and $0 \leq s_2 \leq 1$. If $s_1 + s_2 \leq 1$, then the players receive the share they named. If $s_1 + s_2 > 1$, then both players receive zero. (Utilities are linear in money.) What are ALL the Nash equilibria of this game?

Variation 2. Players 1 and 2 may split a million dollars. Both players simultaneously name shares they would like to have, s_1 and s_2, with $0 \leq s_1 \leq 1$ and $0 \leq s_2 \leq 1$. If $s_1 + s_2 \leq 1$, then player #1 receives the fraction $s_1/(s_1+s_2)$ of the million and player #2 receives the fraction $s_2/(s_1+s_2)$ of the million. If $s_1 = s_2 = 0$, both get $500,000$. If $s_1 + s_2 > 1$, then both players receive zero. What are ALL the Nash equilibria of this game?

Variation 3. Same as Variation 1, except that there is no upper bound on s_i values, i.e., s_i can be any non-negative real number.

Simultaneous Auctions

Variation 1. There are five bidders for a rare first edition of Debreu’s *Theory of Value*. Their valuations are $v_1 > v_2 > \ldots > v_5 > 0$. Highest bidder gets the book and pays that highest bid. That is, if player i bids b_i, then player i gains $v_i - b_i$ if b_i is the uniquely highest bid, $(v_i - b_i)/2$ if i ties with one other for highest bid, and $(v_i - b_i)/3$ if i ties with two others for highest bid and so on. Is it always a NE for everyone to bid their valuation?

Variation 2. Similar, but highest bidder, while getting the book, pays the second highest bid. That is, if player i bids b_i, then player i gains $v_i - b^*$ where b^* is the second highest bid, $(v_i - b^*)/2$ if i ties with one other for highest bid, and so on.

Variation 3. Similar, but highest bidder, while getting the book, pays the third highest bid. That is, if player i bids b_i, then player i gains $v_i - b^*$ where b^* is the third highest bid, $(v_i - b^*)/2$ if i ties with one other for highest bid, and so on.
NY City game and Schelling’s focal points

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>...</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(1,1)</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td></td>
<td>(0,0)</td>
</tr>
<tr>
<td>B</td>
<td>(0,0)</td>
<td>(1,1)</td>
<td>(0,0)</td>
<td></td>
<td>(0,0)</td>
</tr>
<tr>
<td>C</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(1,1)</td>
<td></td>
<td>(0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td></td>
<td>(1,1)</td>
</tr>
</tbody>
</table>

Attack-Defense game:

Variation 1. \(v_1 > v_2 > 0 \)

\[
\begin{array}{c|c|c}
\text{D1} & \text{D2} \\
\hline
\text{A1} & (0, 0) & (+v_1, -v_1) \\
\text{A2} & (+v_2, -v_2) & (0, 0) \\
\end{array}
\]

\(S_1 = \{A1, A2\}, S_2 = \{D1, D2\} \). Are there any Nash equilibria? If so, what are they?

Variation 2. \(v_1 > v_2 > 0 \)

\[
\begin{array}{c|c|c}
\text{D1} & \text{D2} \\
\hline
\text{A1} & (0, 0) & (+v_1, -v_1) \\
\text{A2} & (+v_2, -v_2) & (0, 0) \\
\end{array}
\]

\(S_1 = \text{probability distributions} \) on \(\{A1, A2\} \), \(S_2 = \text{probability distributions} \) on \(\{D1, D2\} \). Are there any Nash equilibria? If so, what are they? Payoffs are expected utilities.