Economics 611 Game Theoretic Microeconomics
Spring 2010 First Exam

All Syracuse University policies and procedures concerning academic honesty apply to this course:

"Syracuse University students shall exhibit honesty in all academic endeavors. Cheating in any form is not tolerated, nor is assisting another person to cheat. The submission of any work by a student is taken as a guarantee that the thoughts and expressions in it are the student's own except when properly credited to another. Violations of this principle include: giving or receiving aid in an exam or where otherwise prohibited, fraud, plagiarism, the falsification or forgery of any record, or any other deceptive act in connection with academic work. **Plagiarism is the representation of another's words, ideas, programs, formulae, opinions, or other products of work as one's own either overtly or by failing to attribute them to their true source.**" (Section 1.0, University Rules and Regulations)

WARNING!!!

While homework problems may have been done cooperatively, **exams are individual work.** Do not communicate about this exam with anyone except the instructor [x3-2345 or e-mail jskelly@maxwell.syr.edu]. **Violation of this rule will result in a grade of 0 for the exam.** Any notices will be sent to you by e-mail; check occasionally.

EXPLAIN your answers carefully.

DUE: 9:30 am, Thursday, February 18, in class.
Economics 611 Game Theory Spring 2010 First Exam

EXPLAIN your answers carefully. **DUE:** 9:30 am, Thursday, February 18, in class. The four problems are each worth 25 points.

1. a. (Autarky) (5 pts) Firm A in the US is the only seller of wine there. Let \(Q_{US}^A \) be Firm A’s sales in the US where demand is given by \(11 - (1/4)Q_{US}^A \). Firm A’s costs are 1 per unit.

\[
\pi^A(Q_{US}^A) = (11 - (1/4)Q_{US}^A) \cdot Q_{US}^A - Q_{US}^A
\]

What value of \(Q_{US}^A \) maximizes profit? What is the sum of consumer surplus and firm profit?

b. (Free Trade) (20 pts) Now trade is opened between the US and France. Firm A is still the only producer in the US, while firm B is the only producer in France. Both can sell in either country: \(Q_{US}^A \) is A’s sales in the US; \(Q_{Fr}^A \) is A’s sales in France; \(Q_{US}^B \) is B’s sales in the US; \(Q_{Fr}^B \) is B’s sales in France. If a firm sells in the other country, their costs include not only their production costs but also a transportation cost of 1 per unit.

Demand in the US is \(11 - (1/4)(Q_{US}^A + Q_{US}^B) \) while demand in France is \(11 - (1/4)(Q_{Fr}^A + Q_{Fr}^B) \). There is an important separability here; e.g.,

\[
\pi^A(Q_{US}^A, Q_{Fr}^A, Q_{US}^B, Q_{Fr}^B) =
\]

\[
P_{US}(Q_{US}^A + Q_{US}^B) \cdot Q_{US}^A + P_{Fr}(Q_{Fr}^A + Q_{Fr}^B) \cdot Q_{Fr}^A - (Q_{US}^A + Q_{Fr}^A) - Q_{Fr}^A
\]

\[
= [11 - (1/4)(Q_{US}^A + Q_{US}^B)] \cdot Q_{US}^A + [11 - (1/4)(Q_{Fr}^A + Q_{Fr}^B)] \cdot Q_{Fr}^A - Q_{US}^A - 2Q_{Fr}^A
\]

\[
= \{[11 - (1/4)(Q_{US}^A + Q_{US}^B)] \cdot Q_{US}^A - Q_{US}^A \} + \{[11 - (1/4)(Q_{Fr}^A + Q_{Fr}^B)] \cdot Q_{Fr}^A - 2Q_{Fr}^A \}
\]

Assume A and B act as Cournot duopolists in each of the US and French markets. What are the Nash equilibrium values of \(Q_{US}^A, Q_{Fr}^A, Q_{US}^B, \) and \(Q_{Fr}^B \)? What is the value of the sum (US consumer surplus + Firm A’s profit)?
2. (25 pts) A law is passed requiring a monopolistic soft-drink manufacturer to separate the production department and the marketing department. The marketing department chooses the price $P \geq 0$ to charge for a bottle of the firm’s soft drink and the production department chooses the level of output $Q \geq 0$. The two departments are forbidden to discuss their decisions with each other and, therefore, move simultaneously. Managers in both departments own shares in the firm and want to maximize its profits

$$\pi = P \cdot S - \left[\frac{1}{2}Q^2 + Q\right]$$

where S denotes the firm’s sales. Sales can not exceed the firm’s output, nor can they exceed the market demand. Unsold output is thrown away. This means $S = \min\{Q, D(P)\}$ where market demand is

$$D(P) = 6 - P \text{ if } P \leq 6 \text{ and } D(P) = 0 \text{ if } P > 6.$$

A. Determine the best response correspondence for each department.

B. Find ALL Nash equilibria.

3. (25 pts) Consider the Mary-Tom auction game (the game tree is on the next page). Find all subgame perfect Nash equilibria. Is there a Nash equilibrium that is not subgame perfect?

4. (25 pts) There are two players and a status quo point $s_0 \in \mathbb{R}$. Player #1 offers a point $s_i \in \mathbb{R}$. Player #2 can then accept s_i or reject it; in the latter case the outcome is s_0. If #2 accepts s_i, the outcome is s_i. Player #2's preferences are represented by $-(s - b_2)^2$ where b_2 is #2's bliss point, while player #1's preferences are represented by $-(s - b_1)^2$, where b_1 is #1's bliss point. Find the subgame perfect Nash equilibrium where all ties are broken in favor of the leftmost alternative in the tie.

Treat the cases
1. $s_0 < b_1 < b_2$
2. $b_1 < s_0 < b_2$
3. $b_1 < b_2 < s_0$
4. $s_0 < b_2 < b_1$