Probability Theory

Experiment

Outcome

Sample Space, S: Set of all possible outcomes

Event: Subset E of the Sample Space, S

Probability Function: A function P from events to the real numbers such that:

1. \(P(E) \geq 0; \)
2. \(P(S) = 1; \)
3. \(A \cap B = \emptyset \) implies \(P(A \cup B) = P(A) + P(B). \)

A\(^c\): Complement of A: \(A \cup A^c = S \) and \(A \cap A^c = \emptyset \)

So \(P(A) + P(A^c) = P(A \cup A^c) = P(S) = 1 \)

\(P(A^c) = 1 - P(A) \)

\[P(A) + P(A^c) = 1 \]

\(P(A) \leq 1 \)

\(P(\emptyset) = 0 \)

If \(E_1 \cap E_2 = \emptyset \) and \(E_2 \cap E_3 = \emptyset \) and \(E_1 \cap E_3 = \emptyset \), then

\[P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3) \]

If \(E_1, E_2, ..., E_i \) are pairwise disjoint, then

\[P(E_1 \cup E_2 \cup ... \cup E_i) = P(E_1) + P(E_2) + ... + P(E_i) \]

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]
Elementary Events

Equiprobable elementary events: \(P(A) = \frac{\#A}{\#S} \)

Fundamental Counting Rule:

1. Suppose a process can be carried out in two stages; the first stage can be carried out in \(m \) ways while the second stage can be carried out in \(n \) ways. Then the whole process can be carried out in \(m \times n \) ways.

2. Suppose a process can be carried out in three stages; the first stage can be carried out in \(m \) ways while the second stage can be carried out in \(n \) ways and the third stage can be carried out in \(r \) ways. Then the whole process can be carried out in \(m \times n \times r \) ways.

Examples:

1. Number of outcomes of 10 successive coin flips
2. Number of five letter "words"
3. Number of possible: six entry alpha-numeric license plates
4. With ordinary poker deck, the number of five card dealings \[311,875,200\]
5. The number of permutations of \(n \) things taken \(r \) at a time
6. With ordinary poker deck,
 i. The number of two card hands;
 ii. The number of three card hands;
 iii. The number of five card hands. \[2,598,960\]
7. The number of combinations of \(n \) things taken \(r \) at a time.
Poker deck

52 cards, distinguished by color, suit, and denomination

26 Red: Suits are hearts (13) and diamonds (13);
26 Black: Suits are spades (13) and clubs (13).

13 denominations within each suit: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack (J), Queen (Q), King (K), Ace (A)

Poker hands

Royal flush: 10-J-Q-K-A in one suit

Straight flush: sequential denominations in one suit

Four of a kind

Full house: Three of one denomination, two of another

Flush: one suit

Straight: sequential denominations

Three of a kind

Two pair

One pair

Not even one pair or better