Euclidean Space

Vectors (Points): \(x = (x_1, x_2, \ldots, x_n) \) e.g., \(0 = (0, 0, \ldots, 0) \)

Euclidean space: \(\mathbb{R}^n \)

\(x = y; x \geq y; x > y \) \([x_2 > x_1 \text{ is not the denial of } x_1 \geq x_2] \)

\(\mathbb{R}^n; \mathbb{R}^n_+ \)

Euclidean Metric

\[d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \]

\[d(x, y) \geq 0 \]
\[d(x, y) = d(y, x) \]
\[d(x, y) = 0 \text{ if and only if } x = y \]
\[d(x, y) + d(y, z) \geq d(x, z) \]

Homework: Show \(d(0, x) - d(0, y) \leq d(0, x + y) \leq d(0, x) + d(0, y) \)

Open \(\epsilon \)-ball at \(x \) in \(\mathbb{R}^n \): For \(\epsilon > 0 \), \(B_\epsilon(x) = \{ x^* \in \mathbb{R}^n / d(x^*, x) < \epsilon \} \)

S is bounded if there exists an \(\epsilon > 0 \) such that \(S \subset B_\epsilon(0) \).

Examples

Intersections, Unions, \(A \times B \) (Cartesian product)

Topology on \(\mathbb{R}^n \)

Let S be a set in \(\mathbb{R}^n \):

S is open if for every \(x \) in \(S \), there exists an \(\epsilon > 0 \) such that \(B_\epsilon(x) \subset S \).

Examples

Intersections, Unions, \(A \times B \)

Int(S), the interior of \(S \), is the union of all the open subsets of \(S \).
Int(S) = \{x \in S / \text{there exists an } \epsilon > 0 \text{ with } B_{\epsilon}(x) \subset S \}.

S is \textit{closed} if \(\mathbb{R}^n \setminus S \) is open.

Examples

Intersections, Unions, \(A \times B \)

\textbf{Limit point}: \(x \) is a limit point of \(S \) if every \(\epsilon \)-ball at \(x \) contains a point of \(S \) other than \(x \).

\(S \) is closed iff it contains all its limit points.

The \textit{boundary} of a set \(S \), \(\partial(S) \), is the collection of all points that are both limit points of \(S \) and limit points of the complement of \(S \).

\textbf{Theorem}: If \(g: X \subset \mathbb{R}^n \to \mathbb{R} \) is continuous on closed \(X \), then for any \(c \) in \(\mathbb{R} \), both of the sets \(\{x \in X / g(x) \geq c\} \) and \(\{x \in X / g(x) \leq c\} \) are closed; equivalently, both of the sets \(\{x \in X / g(x) < c\} \) and \(\{x \in X / g(x) > c\} \) are open.

\textbf{Sums of Sets}

Given \(A, B \subset \mathbb{R}^n \): \(A + B = \{z \in \mathbb{R}^n / \text{there exist } x \in A \text{ and } y \in B \text{ such that } z = x + y \} \)

Examples:

1. In \(\mathbb{R}^2 \), if \(A = \{(a, 0) / a \in \mathbb{R}\} \) and \(B = \{(0, b) / b \in \mathbb{R}\} \), then \(A + B = \mathbb{R}^2 \)

2.

\textbf{Exercises}:

1. \(B_{\epsilon}(0) + \{x\} = B_{\epsilon}(x) \)

2. \(A + \emptyset = A; A + \mathbb{R}^n = \mathbb{R}^n \)

3. What is the sum of \(A = \{(x,y) / x \leq 0 \text{ and } y = 0\} \) and \(B = \{(x,y) / 0 \leq x \text{ and } -1 + 1/(1 + x^2) \leq y \leq 1 - 1/(1 + x^2)\}? \)
Which of the following are true?

4. $A \neq \emptyset, B \neq \emptyset$ imply $A + B \neq \emptyset$.

5. $A \subseteq A + B$.

6. $\{x\} + B = \{x\} + C$ implies $B = C$.

8. A and B bounded implies $A + B$ is bounded.

9. $f(A + B) = f(A) + f(B)$.

10. For each of the following properties, suppose each Y^j has the property. Does that imply that $\sum Y^j$ must have the property?
 A. Non-empty
 B. Additive: $y, y^* \in Y^j$ implies $y + y^* \in Y^j$
 C. Divisibility and constant returns to scale: $y \in Y^j$ and $\beta > 0$ imply $\beta y \in Y^j$
 D. Possibility of inaction: $0 \in Y^j$
 E. Convexity
 F. No free lunch: $Y^j \cap \mathbb{R}^n_+ \subseteq \{0\}$
 G. Open
 H. Closed

Convexity

Set S in \mathbb{R}^n is *convex* if for every $x, y \in S$ and every $\lambda \in [0,1]$,
$$\lambda x + (1 - \lambda)y \in S.$$

Set S in \mathbb{R}^n is *strictly convex* if for every $x, y \in S$ and every $\lambda \in (0,1)$,
$$\lambda x + (1 - \lambda)y \in \text{Int}(S).$$

Exercises:

1. Is \emptyset convex? Strictly convex?

2. Is $\{x\}$ convex? Strictly convex?

3. If A is convex and B is strictly convex, is $A + B$ strictly convex?

4. If A, B, and C are convex and $A + B = A + C$, does that imply $B = C$?